On the Lebesgue constant of subperiodic trigonometric interpolation

نویسندگان

  • Gaspare Da Fies
  • Marco Vianello
چکیده

We solve a recent conjecture, proving that the Lebesgue constant of Chebyshev-like angular nodes for trigonometric interpolation on a subinterval [−ω, ω] of the full period [−π, π] is attained at ±ω, its value is independent of ω and coincides with the Lebesgue constant of algebraic interpolation at the classical Chebyshev nodes in (−1, 1). 2000 AMS subject classification: 42A15, 65T40.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subperiodic trigonometric interpolation and quadrature

We study theoretically and numerically trigonometric interpolation on symmetric subintervals of [−π, π], based on a family of Chebyshevlike angular nodes (subperiodic interpolation). Their Lebesgue constant increases logarithmically in the degree, and the associated Fejérlike trigonometric quadrature formula has positive weights. Applications are given to the computation of the equilibrium meas...

متن کامل

Discrete Fourier analysis on a dodecahedron and a tetrahedron

A discrete Fourier analysis on the dodecahedron is studied, from which results on a tetrahedron is deduced by invariance. The results include Fourier analysis in trigonometric functions, interpolation and cubature formulas on these domains. In particular, a trigonometric Lagrange interpolation on the tetrahedron is shown to satisfy an explicit compact formula and the Lebesgue constant of the in...

متن کامل

Polynomial fitting and interpolation on circular sections

We construct Weakly Admissible polynomial Meshes (WAMs) on circular sections, such as symmetric and asymmetric circular sectors, circular segments, zones, lenses and lunes. The construction resorts to recent results on subperiodic trigonometric interpolation. The paper is accompanied by a software package to perform polynomial fitting and interpolation at discrete extremal sets on such regions....

متن کامل

DISCRETE FOURIER ANALYSIS ON FUNDAMENTAL DOMAIN OF Ad LATTICE AND ON SIMPLEX IN d-VARIABLES

A discrete Fourier analysis on the fundamental domain Ωd of the d-dimensional lattice of type Ad is studied, where Ω2 is the regular hexagon and Ω3 is the rhombic dodecahedron, and analogous results on d-dimensional simplex are derived by considering invariant and anti-invariant elements. Our main results include Fourier analysis in trigonometric functions, interpolation and cubature formulas o...

متن کامل

Polynomial approximation and quadrature on geographic rectangles

Using some recent results on subperiodic trigonometric interpolation and quadrature, and the theory of admissible meshes for multivariate polynomial approximation, we study product Gaussian quadrature, hyperinterpolation and interpolation on some regions of Sd, d ≥ 2. Such regions include caps, zones, slices and more generally spherical rectangles defined by longitudes and (co)latitudes (geogra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 167  شماره 

صفحات  -

تاریخ انتشار 2013